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Apache Helicopter Stabilization Using
Neural Dynamic Programming

Russell Enns* and Jennie Sif
Arizona State University, Tempe, Arizona 85287

A new form of neural control is introduced, neural dynamic programming (NDP), a model-free online learning
control scheme. NDP is shown to perform exceedingly well as a learning controller for practical systems of higher
dimension, such as helicopters. The discussion is focused on providing a viable alternative helicopter control
system design approach rather than providing extensive comparisons among various available controllers. A
comprehensive treatise of NDP and extensive simulationstudies of NDP designs for controlling an Apachehelicopter
under different flight conditions is presented. Design robustness is addressed by performing simulations under
various disturbance conditions. All of the designs are based on FLYRT, a sophisticated industry-scale nonlinear

validated model of the Apache helicopter.

Nomenclature
a = subscript for action network
b, = bias for node & in layer i
c = subscript for critic network
e = error signal
J = approximationof R
p,q,r = aircraft body rates (roll, pitch, yaw), rad/s
R = cost function
r = reinforcementsignal
U, = ultimate cost
u,v,w = aircraft velocities,body axes (longitudinal,lateral,
vertical), ft/s
u, = actuator control vector [z, 25, Z¢, Z4], in.
Wi ik = weight for node & in layeri with input j
X = state vector [u, w,q,0,v, p,r, ¢, V]
o = discount factor
B = network learning rate
¢,0, % aircraft Euler angles (roll, pitch, yaw), rad

Introduction

LTHOUGH neural networks have been used for control pur-

poses for well over the last decade, their application either
has been limited to low-dimensional plants, typically a single con-
trol and occasionally two controls, or has been limited to higher-
dimensional systems that can be suitably decoupled into simpler
subsystems.! =3 This paper demonstrates how a new neural network
control scheme, neural dynamic programming (NDP), can be made
to control more realistic higher-dimensional systems such as he-
licopters by providing an approximate solution to optimal control
problems that are often solved by dynamic programming.

The original motivation for using an NDP-based helicopter con-
trol methodology was to find reconfigurable control solutions for
helicopters. NDP was perceived as a strong candidate for such a
task because of a number of its features. In particular, it is a learn-
ing control system that does not require system model knowledge
a priori (it is model free) and it can be applied to complex systems
such as helicopters without the need to decouple the control system
into simpler subsystems. In fact, it can learn to take advantage of
any of the system’s cross-coupling characteristics when generating
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its control solution, including coupling benefits that may not be ap-
parent to a control systems design engineer. However, a necessary
first step in determining the merits of such a control methodology
is to determine if it is satifactorily able to control, and in particular
stabilize, an unstable aircraft. This is especially relevant because
applications of NDP to date have themselves been limited to simple
single control systems,*~’ hence, the focus of this paper.

The potentialadvantagesof NDP overotheroptimal controlbased
solutions may be summarized as follows. First, NDP does not re-
quire an explicit model of the system that is to be controlled. The
controller learns and improves its performance on the fly. Second,
NDP avoids the curse of dimensionality that dynamic programming
suffers from by providing approximate solutions® This, however,
may also be consideredas the downside of NDP when true optimal-
ity is demanded. Third, NDP does not require an explicitly defined
system performance measure, R, which is usually a function of the
system states and the control actions in the classical optimal control
theory.

NDP can be used alone, or it can augment other control methods
to improve system performancein the presence of model errors and
uncertaintiesand unmodeledplantnonlinearities.Such a blendingof
techniques allows us to combine the optimality of classic techniques
suchaslinearquadraticcontrol(underassumptionsoflinearity) with
NDP’s ability to compensate for nonlinearitiesand modeling errors.
For the purposes of this paper, we restrictour attentionto using NDP
alone.

Numerous flight control design methods have been developed
over the last several decades. Classic flight control design meth-
ods, consisting of methods such as proportional-integral-derivative
(PID) control, date back to the earliest flight control systems’ and
are still being used today with much success. Modern control de-
sign methods such as linear quadratic regulators, linear quadratic
Gaussian, control, loop transfer recovery,®!! model following,'!
eigenstructureassignment,'? receding horizon optimal control,'* H-
infinity control, and variable structure control'* have been used with
varying degrees of success.

The application of neural networks to flight control has been
more recent, and most results either have been limited to simulation
studies of simple (usually scalar) control subsystems,'>~!° or have
decoupledthe sophisticatedsystems into smaller subsystems guided
by the designer’s expertise2°~2? Several of these papers use neural
networks to either approximate or to improve on the approximation
of an aircraft’s inverse dynamics. There exist some notable excep-
tions to this. For example, Ha*} uses neural networks as a direct
form of control, though the study is limited to lateral-directional
control for a linear model. Balakrishnan is one of the first to use
a form of reinforcement learning (adaptive critic based networks)
for aircraft flight controls.* However, the research limits itself to
the longitudinal axis, and as a result, the system only has a single
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Fig.1 Basic NDP controller.

control. Further, an explicitsystem model was used, which contrasts
to NDP, where such a model is not necessarily required.

Kim and Calise have contributed a large body of work that uses
neural networks to improve on an underlyingdynamic model inver-
sion control methodology*~2>24 The neural networks compensate
for any model inversionerror thatexists by augmentinga control ad-
justmentto the nominal P-D control term. Generally, these methods
are applied to either a single control axis or the flight control system
is decoupled into individual control axes with a neural network for
each axis.

Much of the flight control research to date either uses a linear
model, or a fairly simple nonlinear model, and does not model ac-
tuator dynamics. Some notable exceptions to this are the work in
Refs. 20-22 and 24 already described. No such limitations are made
in this paper either.

The focus of the paper is on using NDP designs to stabilize a
helicopter. In particular, we show how NDP can be used to stabilize
the aircraft for five flight conditions, hover, 30, 60, 90, and 120 kn.
Simulations are performed in both clear air and in the presence of
turbulenceand step gusts. Our NDP designs and our simulations are
conductedusing the FLYRT model, a sophisticatedand very realistic
system with nonlinearities,sensor and actuator dynamics, etc.

The paper is organized as follows. We first cover NDP compre-
hensively in the nextsection. In the third section, we briefly describe
the helicopter model. The fourth section defines our design objec-
tivesand providesresults from simulationstudies. Some discussions
and conclusions are then given in the last section.

NDP and Multi-Input/Multi-Output Rotorcraft Control

The objective of a NDP controller is to optimize a desired per-
formance measure by learning to create appropriate control actions
throughinteraction with the environment. The controlleris designed
to learn to perform better over time using only sampled measure-
ments and with no prior knowledge about the system.

Dynamic programming has been applied extensively in different
fields of engineering, operations research, economics, and so on.
Unfortunately the computational costs of dynamic programming
are often very high, a result of the so-called curse of dimensional-
ity. In recent years, a new approach to dynamic programming has
surfaced, which may representa breakthroughin the practicalappli-
cationsof dynamic programmingto complex problems. Initialexpo-
sitions of this simulation-basedapproximatedynamic programming
technique were referred to as reinforcementlearning 232 Using ar-
tificial neural networks for approximate dynamic programming, or
NDP, was proposed in Refs. 27-29.

One of the early reinforcement learning paradigms was intro-
duced by Barto et al. in 1983 (Ref. 25), in which pattern-based
dynamic programming was proposed. Also in thatoriginal creation,
a basic form of the temporal difference (TD) (1) algorithm started
to take shape. A more systematic treatment of the TD (1) was pro-
vided by Sutton in 1988 (Ref. 26). The notion of Q learning was
consequentlyintroduced by Watkins* shortly after. Prokhorov and
Wunsch have developeda number of NDP paradigms, starting from

heuristic programming. However, in their autolander application,
their results are only for the scalar control case.’® Bertsekas and
Tsitsiklis®! providea more systematic treatment of approximate dy-
namic programming, which includes NDP. Reference 31 reveals the
connections between classic dynamic programming and NDP from
atheoretic viewpoint. It also represents a broad collection of subop-
timal control methods in addition to neural-network-basedapprox-
imate dynamic programming. However, a thorough and effective
treatment of the design and implementation of NDP is only in the
early stages. More work is needed in all aspects from basic concepts,
to implementation, application,and a thorough systematic analysis.

This section defines the underlying NDP control framework that
this work is based on and then expands on this definition to provide
a more comprehensive framework that can serve as a basis for a
helicopter flight control system. A significant difference between
previous NDP work*®7 and the more comprehensive framework
presented here is that the earlier work has been limited to scalar
control, whereas the latter is applicable to multi-input/multi-output
(MIMO) control. Though the basic design framework for the two
are similar, the multiple controlimplementationis significantly more
complex. The underlying NDP control framework, shown in Fig. 1,
consistsof two main blocks, an action generatorand a critic network,
each of which is described in the following sections.’

The essence of the NDP critic is to approximate a cost function
R(t) by J () throughlearning, where R (?) can be a futurereward-to-
goand J (¢) is the critic network outputin Fig. 1. When this approx-
imation is achieved, one has obtained an (approximate) solution to
the Bellman equation. The learning is performed without requiring
anexplicitsystemmodel (suchastheformx (r4+1) = f[x(t), u(?)]).
Instead, the system dynamics information is implicitly absorbed by
both the action and critic networks. The approximate solution to the
Bellman equation is implemented one-step back in time instead of
one-step forward. Therefore, the need for state prediction to obtain
x(t+1) [and, thus, J (¢ + 1)] is replaced by the requirement to store
J(t — 1), as shown in Fig. 1.

Both the action and critic networks are trained toward optimiz-
ing a global objective, namely, the Bellman equation for the critic
network and an ultimate performance objective for the action net-
work. During the learning process, the action network is constrained
by the critic network to generate controls that optimize the future
reward-to-go instead of only temporarily optimal solutions. For the
helicopter stabilization application, the future reward-to-gois used
to measure the success or failure of each learning attempt, and the
ultimate performance objective U, is to stabilize the helicopter for
the specified flight condition.

In contrastto usual neural network applications,thereis no readily
available training sets of input-output pairs used for approximating
R(?) in terms of a least-squares fit. Instead, both the control action
u and the critic output J are updated according to an error func-
tion that changes from one time step to the next. Therefore, the
steepest decent algorithm does not hold valid for either of the two
networks. With this characteristic in mind, a recursive stochastic
algorithm developed by Robbins and Monro has been used to char-
acterize convergencein a statistical average sense for the action and
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critic networks individually. Namely, with one network completed
updating, the other network with the updating rules to be described
asymptoticallyreaches a (local) minimum of the statistical average
of the error objective function for the network.’

Critic Network

The critic network approximates a cost function should an ex-
plicit cost function not be convenient or possible to represent. For
example, the network output J(¢) can approximate a cost function
such as the discounted total reward-to-go,

Rty=r(@t+ D) +ar@t+2)+a’r(t+3)+--- 1)

where R(t) is the future accumulative reward-to-go value at time ¢,
« is a discount factor for the infinite-horizonproblem (0 < o < 1),
and (¢ + 1) is the external reinforcement value at time ¢ 4 1.

Typically NDP has been applied to systems where explicit feed-
back is not available at each time step. In such cases, the reinforce-
ment signal r (7) takes a simple binary form with () = 0 when the
final event is successful (an objective is met) or r () = —1 if the
final event is a failure (the objective is not met). In the flight con-
trol case discussed here, because more explicit state information is
available continually, we can extend 7 (¢) to be a more informative
quadratic reinforcement signal, that is,

n 2
() = — Z ((-xi —xi,d)> 2)

. -xi,max
i=1

where x; is the ith state of the state vector x, x;, is the desired
reference state, and x; .y 1S a state normalization factor.

The critic network can be implemented with a standard multilayer
feedforward network. The network can be linear or have a nonlinear
sigmoid function to fan out outputs depending on the complexity
of the problem. We typically use a two-layer weight network with
sigmoid functions for the nonlinearities as shown in Fig. 2. The
network output, denoted by the vectoro =[o; - --0,]" in Fig. 2, is
simply the scalar J in the critic network.

The critic network is trained as follows. Define the prediction
error for the critic element as

e =al@)=[J(-1) —r@)] 3)

which also represents the principle of optimality if the equation is
balanced,thatis, e.(t) = 0. Thelearningobjectiveis to minimize the
square of the prediction error in terms of the critic network output,

E.(1) = 1el(1) )

The weights of the critic network are then updated according to
a gradient descent algorithm,

w(r + 1) = w.() + Aw (1) )

3 _AE] CAE(D) 3J (1)
Aw (1) = B.(1) [ _aw(.(t)} = B.(?) [ _aj(t) _aw(.(t)} (6)

where S, (¢) is the learning rate of the critic network at time ¢, which
usually decreases with time to a small value. The network weights
are adjusted according to Egs. (5) and (6), where
0E.(t)  JE (1) de(t)
aJ(t) ~ de.(t) dJ(1)

ae.(t) (7)

and 9J (¢) /0w, (¢) is a function of the critic network’s structure.

Fig.2 Two-layer nonlinear feedforward neural network.

Action Network

The action network generatesthe desired plant control given mea-
surements of the plant states. As with the critic network, the action
network can be implemented with the standard multilayer linear or
nonlinear feedforward neural network shown in Fig. 2. In this case,
the number of network outputs equals the control space dimension.

The principlein adapting the action network is to backpropagate
the error between the desired ultimate cost objective,denoted by U..,
and either the actual cost or the cost approximation. U, is set to 0
in the helicopter control application. Either the actual cost function
R(t) or an approximation to it, J(¢), can be used depending on
whether an explicit cost function is available or a critic network
needs to be used. In the latter case, which is used in this paper,
backpropagationis done through the critic network.

The weight updating in the action network is formulated as fol-
lows. Let

ea(t) = J(t) - U('(t) (8)

The weights in the action network are updated to minimize the
following performance error measure:

E (1) = 3e;(1) )

The update algorithm is similar to that used for the critic network.
By a gradient descentrule,

wo(t+ 1) = w,(t) + Aw, (1) (10)
_ IAO)
Awa(t)_/sa(t)[ Bwa(t):| (1])
where
oE, (1) _ oE,(t) J(t) du(t) (12)
dw, (1) 3J(t) du(t) Jw, (1)
OE, (1) _ E,(1) de (1) _ e (® 13)

AJ(t)  Be,(t) dJ(t)

where dJ (¢) /du(t) is calculated throughthe critic network if a critic
is used or through the cost functionifitis used and du(t) /dw, (¢) is
calculated through the action network and depends on the network’s
particular structure.

MIMO NDP Implementation for Helicopter Control

The basic NDP framework described needs to be further devel-
oped to actually implement NDP as a viable form of helicoptercon-
trol. Expanding on this paradigm results in the more sophisticated
NDP control structure, shown in Fig. 3. Such a control structure can
also be used to solve command tracking and other control problems
more sophisticated than stabilization. This section describes the de-
tails of this more advanced NDP controller and the rationale behind
them.

First, a trim network that schedules the nominal control trim po-
sition as a function of aircraft state and environmentalflight param-
eters (such as aircraft weight, air density, etc.) is required. Having
NDP determine the control trim positionis key to successfullyusing
NDP to control general systems. Previous NDP control designs were
successful because the systems that were tested, for example, the in-
verted pendulum, had a zero trim requirement.” Often flight control
papershave presentedcontrol methodologiesthat were designedand
tested on linear models that have a zero trim requirement because
the linear model is linearizedabout a trim condition. Such lineariza-
tion can misleadingly indicate good results. This, too, would be the
case for NDP and, hence, the required use of an accurate nonlinear
model, which, as a consequence of its nonlinearities, has a nonzero
trim requirement.

The trim network, shown in Fig. 3, is trained using a collected set
of trim data over the range of flight conditions of interest. An NDP-
based method for determining the trim position for a given flight
condition has been developed, and a summary of the technique is
presented here 3
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Fig.4 Trim positions as a function of airspeed for neural and FLYRT methods.

The NDP-based method for determining the trim control position
for a given flight condition uses the offline action network with its
inputs zeroed. An initially assumed trim control position is picked,
using system knowledge if available. With the network inputs ze-
roed, the trim position can be equivalently stored as network biases
in the offline action network. The system is repeatedly evolved over
a specified time interval (200 ms) with the actuators fixed at the
trim position’s current value. During each iteration, backpropaga-
tion training is used to tune the network biases (equivalently the
trim positions) until the squared error between the system’s evolved
states and the system’s desired trim states is minimized sufficiently.
During the training procedure, the network’s learning rate g, is set
to decrease as a function of iteration number.

The method works very well, as shown in Fig. 4, which compares
the NDP generatedtrim positionsto those generated by FLYRT over
the range of 0-150kn forward speed. In fact, the results appearto be
identical except for roll, which has a worst-case difference of less
than 0.15 deg.

Several other considerations need to be made to implement the
NDP controller for control of systems such as a helicopter. First, the
action network is implemented as a traditional two-layer feedfor-
ward network. However, because the action neural network’s output

(control) is typically limited to £1 by the sigmoidal nonlinearity
present in the last stage of the network, a control scaling factor is
used for each control. The value chosen is typically Kcon = Umax
where 1, is the maximum control authority of the actuators. It is
necessary to incorporatethis scaling into the backpropagationwhen
training the action network.

Second, the quadratic reinforcement signal described earlier is
used. Not only does this provide better information than the binary
reinforcement signal, it is requisite for the command tracking con-
trol problem. Additionally, the normalization factorused in the rein-
forcement function is decreased as a function of time at a specified
rate until it reaches a lower limit. This allows the relative importance
of each state to change with time as required by the application.

Third, the failure criteria used in the original NDP framework are
alsodecreasedas a functionof time. This helps reduce the allowable
error in the plant’s states as time increases.

Fourth, the input to the action network, x*, needs to be a nor-
malization of x — x, rather than simply a normalization of x. This
providesnonzerostate stabilizationand command tracking capabili-
ties. The inputto the criticis (x*)?, which helps shape the J form and
has resulted in significant performance improvements over results
in previous research.
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Fifth, network biases are added to the action network to accom-
modate control biases and disturbances in the plant (much like in-
tegrators are added to linear quadratic controllers).

Finally, an additional action neural network (ANN) can be imple-
mented to performonline learning to adapt to local flight conditions
while the first ANN’s weights are frozen after having been trained
offline under specific common flight conditions. The second ANN’s
online weight adaptationsbased on its experiences should improve
the controller’s performance. The second ANN can be authority
limited as required by the application. The results in this paper do
not include the second ANN.

Helicopter Model

NDP is tested using the helicopter model shown in Fig. 5. The
model, run at 50 Hz, consists of three parts: an actuator model, an
actuator to blade geometry model, and FLYRT.

At the heart of the helicopter model is FLYRT, a sophisticated
nonlinear flight simulation model of the Apache helicopter devel-
oped by The Boeing Company over the past two decades>> FLYRT
models all of the forces and moments acting on the helicopter. The
rotor is modeled using a blade element model. FLYRT dynamically
couples the six-degree-of-freedan rigid body of the helicopter to
the main rotor through Euler equations. The drive train is repre-
sented as a single-degree-of-reecom model and is coupled to the
main rotor, tail rotor, and engine. The engine is modeled in suffi-
cient detail to cover performance over all phases of flight, including
ground modes. The landing gear is modeled as three independent
units interfacing with a rigid airframe. Quaternions are used during
state integration to accommodate large attitude maneuvers.

In addition to FLYRT, our model also consists of actuator models
as well as a model of the mechanicalgeometry between the actuators
and the helicopter blades. Each actuator is modeled as a first-order
lag with time constant T = (0.03, reflective of a typical actuator. Ac-
tuator rate and position limits are also modeled. Thus, the inputs
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to FLYRT are the four commanded blade angles of the helicopter:
collective, longitudinal, lateral, and directional. The outputs from
FLYRT are numerous; for flight control purposes, they are limited to
the aircraft’s translational and rotational velocities and the aircraft’s
orientation for a total of nine states.

The operating conditions for which our simulation studies are
performed are shown in Table 1. The center of gravity (c.g.) is
listed in the standard Apache fuselage station/water line/butt line
coordinate frame.*

Results

This section presents results showing the performance of NDP in
stabilizing the Apache helicopter. Characteristic to previous NDP
research, the performance of NDP is summarized statistically in
tables. Five flight conditions are considered, the stabilization of
the helicopter at hover and at 30, 60, 90, and 120 kn. Each flight
condition s tested in three wind conditions: case A, no wind; case
B, 10-ft/s step gust for 5 s; and case C, Dryden turbulence with a
spatialturbulenceintensityof o =5 ft/sand a turbulencescalelength
of Ly = 1750 ft. In addition to the tabular statistics provided, both
statisticaland typical time history plots (Figs. 6 and 7) of the aircraft
states are provided for two cases, turbulence at 30 kn and step gusts
at 90 kn. Figures 6 and 7 show the performance during the testing
phase. Time history plots for the other flight conditions are similar.

The objective of stabilizationis to drive all aircraft states to their
desired values for the given flight conditions during network train-
ing, regardless of the vehicle’s initial conditions. The states of inter-
est are the aircraft’s translational (#, v, w) and rotational (p, g, )
velocities and the aircraft’s Euler angles pitch 6, roll ¢, and yaw
Y. Failure criteria are used to bound each state’s allowed error. The
allowed errors, shown in Table 2, are initially large and decrease as
a function of time to an acceptable minimum.

Table1 Helicopter operating conditions

Parameter Value
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Fig. 6 Typical and statistical state and control trajectories of NDP stabilization at 30 kn in turbulence.
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These failure criteria were chosen judiciously, but no claims are
made to their optimality. The results show that these criteria create
a control system that can stabilize the helicopter both in nominal
conditions and when subjected to disturbances. Heuristic failure
criterion is one of the advantages of NDP if one does not have an
accurate account of the performance measure. This is also one char-
acteristic of the NDP design that differs from other neural control
designs. The critic network plays the role of working out a more
precise account of the performance measure for credit/blame as-
signment derived from the heuristic criteria. If the networks have
converged, an explicitly desired state has been achieved, which is
reflected in the U, term in the NDP structure.

The statistical success of the NDP controller’s ability to learn to
control the helicopteris evaluated for the five flight conditions. For
each flight condition, 100 runs were performed to evaluate NDP’s
performance, where for eachrun the neural networks’ initial weights
were set randomly. Each run consists of up to 500 attempts (trials)
to learn to control the system successfully. An attempt is deemed
successful if the helicopter stays within the failure criteria bounds
described in Table 2 for the entire flight duration (1 min). If the
controller successfully controls the helicopter within 500 trials, the
run is considered successful, if not, the run is considered a failure.

The statistical training results for the 15 flight conditions simu-
lated are shown in Table 3. The percentage of successfulruns reflects
the percentageof runs for which the NDP system successfullylearns
to control the helicopter. The average number of trialsis the average
number of trials that it takes the NDP system to learn to control the
helicopter.

The neural network parameters used during training are provided
in Table 4. The learning rates, §, for the ANN and critic network
are potentially scheduled to decrease linearly with time (typically
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or Ny internal update cycles of the weights have occurred. N, is
the number of hidden nodes in the neural networks. Note that these
parameters were chosen based on experience but were not tuned to
optimize the results.

The results indicate that a large number of trials must be made
before successful stabilization. This is not suprising for a learning
system that is learning from experience without any a priori system
knowledge. The ramification is that this training is done offline, that
is, not in a real helicopter, where failures can be afforded, until the
controlleris successfully trained. Once trained, the neural network

Table 3 Learning statistics for NDP control of the Apache
helicopter for three wind conditions

Condition
Case Hover 30kn 60kn 90kn 120kn
Case A
Percentage of successful 100 100 100 100 100
runs, %
Average number of trials 18 47 36 30 70
Case B
Percentage of successful 28 72 82 66 30
runs, %
Average number of trials 201 148 162 176 191
Case C
Percentage of successful 88 63 74 77 45
runs, %
Average number of trials 128 214 206 186 200

Table4 Neural network parameter values

over a few seconds). In every time frame, the weight equations are Parameter Value
updated until either the error has sufficiently converged (E < E\) Ba(10) o1
a\l0 .
,Ba ([f) 0.1
Table2 Failure criterion for helicopter stabilizati Pelto) 0
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Fig.7 Typical and statistical state and control trajectories of NDP stabilization at 90 kn with step gust.
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weights are frozen, and the controller structure shown in Fig. 3 can
be implemented in a helicopter. Limited authority online training
can then be performed to improve system performance.

Once the system is successfully trained, the action network’s
weights are frozen, and the system can be tested. Typical and statis-
tical time histories of the system when tested are shown for a flight
at 30 kn in turbulence (Fig. 6) and a flight at 90 kn exposed to a
step gust (Fig. 7). The typical time history was a randomly chosen
simulation selected from the repertoire of test runs for that flight
condition. The average error and error deviation reflect the Monte
Carlo sample mean and sample variance over time when testing all
of the successfully trained networks reflected in the Table 3 statis-
tics for the specified flight condition. The results show that once the
NDP controller has been successfully trained, it can reliably and
consistently drive the system to its desired states.

Conclusions

This paper has taken NDP and successfullyappliedit to helicopter
stabilization, a sophisticated and realistic control problem. Results
presented here show the NDP controller able to stabilize success-
fully the Apache helicopter over a wide range of flight conditions
and subject to various disturbances. Several new developments de-
scribed in this paper have been made to extend NDP to the general
MIMO control problem. The net result is that NDP shows promise
as a viable control system design methodology, especially where
model-free control system designs are required or where there is
complex multi-axes coupling issues.
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