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Apache Helicopter Stabilization Using
Neural Dynamic Programming
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Arizona State University, Tempe, Arizona 85287

A new form of neural control is introduced, neural dynamic programming (NDP), a model-free online learning
control scheme. NDP is shown to perform exceedingly well as a learning controller for practical systems of higher
dimension, such as helicopters. The discussion is focused on providing a viable alternative helicopter control
system design approach rather than providing extensive comparisons among various available controllers. A
comprehensive treatise ofNDP andextensive simulationstudies of NDP designs for controllinganApachehelicopter
under different � ight conditions is presented. Design robustness is addressed by performing simulations under
various disturbance conditions. All of the designs are based on FLYRT, a sophisticated industry-scale nonlinear
validated model of the Apache helicopter.

Nomenclature
a = subscript for action network
bi;k = bias for node k in layer i
c = subscript for critic network
e = error signal
J = approximation of R
p; q; r = aircraft body rates (roll, pitch, yaw), rad/s
R = cost function
r = reinforcement signal
Uc = ultimate cost
u; v; w = aircraft velocities, body axes (longitudinal, lateral,

vertical), ft/s
ua = actuator control vector [za ; zb; zc; zd ], in.
wi; j;k = weight for node k in layer i with input j
x = state vector [u; w; q; µ; v; p; r; Á; Ã ]
® = discount factor
¯ = network learning rate
Á; µ; Ã = aircraft Euler angles (roll, pitch, yaw), rad

Introduction

A LTHOUGH neural networks have been used for control pur-
poses for well over the last decade, their application either

has been limited to low-dimensional plants, typically a single con-
trol and occasionally two controls, or has been limited to higher-
dimensional systems that can be suitably decoupled into simpler
subsystems.1¡3 This paper demonstrateshow a new neural network
control scheme, neural dynamic programming (NDP), can be made
to control more realistic higher-dimensional systems such as he-
licopters by providing an approximate solution to optimal control
problems that are often solved by dynamic programming.

The original motivation for using an NDP-based helicopter con-
trol methodology was to � nd recon� gurable control solutions for
helicopters. NDP was perceived as a strong candidate for such a
task because of a number of its features. In particular, it is a learn-
ing control system that does not require system model knowledge
a priori (it is model free) and it can be applied to complex systems
such as helicopterswithout the need to decouple the control system
into simpler subsystems. In fact, it can learn to take advantage of
any of the system’s cross-couplingcharacteristicswhen generating
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its control solution, including coupling bene� ts that may not be ap-
parent to a control systems design engineer. However, a necessary
� rst step in determining the merits of such a control methodology
is to determine if it is satifactorily able to control, and in particular
stabilize, an unstable aircraft. This is especially relevant because
applicationsof NDP to date have themselves been limited to simple
single control systems,4¡7 hence, the focus of this paper.

The potentialadvantagesof NDP overotheroptimalcontrolbased
solutions may be summarized as follows. First, NDP does not re-
quire an explicit model of the system that is to be controlled. The
controller learns and improves its performance on the � y. Second,
NDP avoids the curse of dimensionalitythat dynamic programming
suffers from by providing approximate solutions.8 This, however,
may also be consideredas the downside of NDP when true optimal-
ity is demanded. Third, NDP does not require an explicitly de� ned
system performance measure, R, which is usually a function of the
system states and the control actions in the classicaloptimal control
theory.

NDP can be used alone, or it can augment other control methods
to improve system performancein the presence of model errors and
uncertaintiesandunmodeledplantnonlinearities.Sucha blendingof
techniquesallows us to combine the optimalityof classic techniques
suchas linearquadraticcontrol(underassumptionsof linearity)with
NDP’s ability to compensatefor nonlinearitiesand modeling errors.
For the purposesof this paper,we restrictour attentionto usingNDP
alone.

Numerous � ight control design methods have been developed
over the last several decades. Classic � ight control design meth-
ods, consistingof methods such as proportional– integral–derivative
(PID) control, date back to the earliest � ight control systems9 and
are still being used today with much success. Modern control de-
sign methods such as linear quadratic regulators, linear quadratic
Gaussian, control, loop transfer recovery,10;11 model following,11

eigenstructureassignment,12 recedinghorizonoptimal control,13 H-
in� nity control,and variablestructurecontrol14 havebeen used with
varying degrees of success.

The application of neural networks to � ight control has been
more recent, and most results either have been limited to simulation
studies of simple (usually scalar) control subsystems,15¡19 or have
decoupledthe sophisticatedsystems into smallersubsystemsguided
by the designer’s expertise.20¡22 Several of these papers use neural
networks to either approximateor to improve on the approximation
of an aircraft’s inverse dynamics. There exist some notable excep-
tions to this. For example, Ha23 uses neural networks as a direct
form of control, though the study is limited to lateral–directional
control for a linear model. Balakrishnan is one of the � rst to use
a form of reinforcement learning (adaptive critic based networks)
for aircraft � ight controls.4 However, the research limits itself to
the longitudinal axis, and as a result, the system only has a single
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Fig. 1 Basic NDP controller.

control.Further, an explicit system model was used,which contrasts
to NDP, where such a model is not necessarily required.

Kim and Calise have contributed a large body of work that uses
neural networks to improve on an underlyingdynamic model inver-
sion control methodology.20¡22;24 The neural networks compensate
for any model inversionerror that exists by augmentinga controlad-
justment to the nominalP–D control term. Generally, these methods
are applied to either a single control axis or the � ight control system
is decoupled into individual control axes with a neural network for
each axis.

Much of the � ight control research to date either uses a linear
model, or a fairly simple nonlinear model, and does not model ac-
tuator dynamics. Some notable exceptions to this are the work in
Refs. 20–22 and 24 alreadydescribed.No such limitationsare made
in this paper either.

The focus of the paper is on using NDP designs to stabilize a
helicopter. In particular,we show how NDP can be used to stabilize
the aircraft for � ve � ight conditions,hover, 30, 60, 90, and 120 kn.
Simulations are performed in both clear air and in the presence of
turbulenceand step gusts. Our NDP designs and our simulationsare
conductedusingthe FLYRT model, a sophisticatedand veryrealistic
system with nonlinearities,sensor and actuator dynamics, etc.

The paper is organized as follows. We � rst cover NDP compre-
hensively in the next section. In the third section,we brie� y describe
the helicopter model. The fourth section de� nes our design objec-
tivesandprovidesresultsfromsimulationstudies.Some discussions
and conclusions are then given in the last section.

NDP and Multi-Input/Multi-Output Rotorcraft Control
The objective of a NDP controller is to optimize a desired per-

formance measure by learning to create appropriatecontrol actions
throughinteractionwith the environment.The controlleris designed
to learn to perform better over time using only sampled measure-
ments and with no prior knowledge about the system.

Dynamic programming has been applied extensively in different
� elds of engineering, operations research, economics, and so on.
Unfortunately the computational costs of dynamic programming
are often very high, a result of the so-called curse of dimensional-
ity. In recent years, a new approach to dynamic programming has
surfaced,which may representa breakthroughin the practicalappli-
cationsof dynamicprogrammingto complexproblems. Initialexpo-
sitionsof this simulation-basedapproximatedynamicprogramming
techniquewere referred to as reinforcement learning.25;26 Using ar-
ti� cial neural networks for approximate dynamic programming, or
NDP, was proposed in Refs. 27–29.

One of the early reinforcement learning paradigms was intro-
duced by Barto et al. in 1983 (Ref. 25), in which pattern-based
dynamic programmingwas proposed.Also in that original creation,
a basic form of the temporal difference (TD) .¸/ algorithm started
to take shape. A more systematic treatment of the TD .¸/ was pro-
vided by Sutton in 1988 (Ref. 26). The notion of Q learning was
consequentlyintroducedby Watkins30 shortly after. Prokhorov and
Wunsch have developeda number of NDP paradigms, starting from

heuristic programming. However, in their autolander application,
their results are only for the scalar control case.5;6 Bertsekas and
Tsitsiklis31 providea more systematic treatment of approximatedy-
namic programming,which includesNDP. Reference31 reveals the
connectionsbetween classic dynamic programming and NDP from
a theoreticviewpoint. It also representsa broad collectionof subop-
timal control methods in addition to neural-network-basedapprox-
imate dynamic programming. However, a thorough and effective
treatment of the design and implementation of NDP is only in the
early stages.More work is needed in all aspectsfrombasicconcepts,
to implementation,application,and a thoroughsystematic analysis.

This section de� nes the underlyingNDP control framework that
this work is based on and then expandson this de� nition to provide
a more comprehensive framework that can serve as a basis for a
helicopter � ight control system. A signi� cant difference between
previous NDP work4;6;7 and the more comprehensive framework
presented here is that the earlier work has been limited to scalar
control, whereas the latter is applicable to multi-input/multi-output
(MIMO) control. Though the basic design framework for the two
are similar, themultiplecontrolimplementationis signi� cantlymore
complex. The underlyingNDP control framework, shown in Fig. 1,
consistsof two mainblocks,an actiongeneratoranda criticnetwork,
each of which is described in the following sections.7

The essence of the NDP critic is to approximate a cost function
R.t/ by J .t/ throughlearning,where R.t/ can be a futurereward-to-
go and J .t/ is the critic network output in Fig. 1. When this approx-
imation is achieved, one has obtained an (approximate) solution to
the Bellman equation. The learning is performed without requiring
anexplicitsystemmodel (such as the form x.tC1/ D f [x.t/; u.t/]).
Instead, the system dynamics information is implicitly absorbed by
both the action and critic networks.The approximatesolution to the
Bellman equation is implemented one-step back in time instead of
one-step forward. Therefore, the need for state prediction to obtain
x.t C1/ [and, thus, J .t C1/] is replaced by the requirement to store
J .t ¡ 1/, as shown in Fig. 1.

Both the action and critic networks are trained toward optimiz-
ing a global objective, namely, the Bellman equation for the critic
network and an ultimate performance objective for the action net-
work.During the learningprocess, the actionnetwork is constrained
by the critic network to generate controls that optimize the future
reward-to-go instead of only temporarily optimal solutions. For the
helicopter stabilization application, the future reward-to-go is used
to measure the success or failure of each learning attempt, and the
ultimate performance objective Uc is to stabilize the helicopter for
the speci� ed � ight condition.

In contrastto usualneuralnetworkapplications,there is no readily
available training sets of input–output pairs used for approximating
R.t/ in terms of a least-squares � t. Instead, both the control action
u and the critic output J are updated according to an error func-
tion that changes from one time step to the next. Therefore, the
steepest decent algorithm does not hold valid for either of the two
networks. With this characteristic in mind, a recursive stochastic
algorithm developedby Robbins and Monro has been used to char-
acterize convergencein a statisticalaverage sense for the action and
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critic networks individually. Namely, with one network completed
updating, the other network with the updating rules to be described
asymptotically reaches a (local) minimum of the statistical average
of the error objective function for the network.7

Critic Network
The critic network approximates a cost function should an ex-

plicit cost function not be convenient or possible to represent. For
example, the network output J .t/ can approximate a cost function
such as the discounted total reward-to-go,

R.t/ D r .t C 1/ C ®r.t C 2/ C ®2r.t C 3/ C ¢ ¢ ¢ (1)

where R.t/ is the future accumulative reward-to-go value at time t ,
® is a discount factor for the in� nite-horizonproblem (0 < ® < 1),
and r.t C 1/ is the external reinforcement value at time t C 1.

Typically NDP has been applied to systems where explicit feed-
back is not available at each time step. In such cases, the reinforce-
ment signal r.t/ takes a simple binary form with r.t/ D 0 when the
� nal event is successful (an objective is met) or r .t/ D ¡1 if the
� nal event is a failure (the objective is not met). In the � ight con-
trol case discussed here, because more explicit state information is
available continually, we can extend r.t/ to be a more informative
quadratic reinforcement signal, that is,

r .t/ D ¡
nX

i D 1

³
.xi ¡ xi;d/

xi;max

´2

(2)

where xi is the i th state of the state vector x, xi;d is the desired
reference state, and xi;max is a state normalization factor.

The critic networkcan be implementedwith a standardmultilayer
feedforwardnetwork.The network can be linear or have a nonlinear
sigmoid function to fan out outputs depending on the complexity
of the problem. We typically use a two-layer weight network with
sigmoid functions for the nonlinearities as shown in Fig. 2. The
network output, denoted by the vector o D [o1 ¢ ¢ ¢ op ]T in Fig. 2, is
simply the scalar J in the critic network.

The critic network is trained as follows. De� ne the prediction
error for the critic element as

ec.t/ D ®J .t/ ¡ [J .t ¡ 1/ ¡ r .t/] (3)

which also represents the principle of optimality if the equation is
balanced,that is, ec.t/ D 0. The learningobjectiveis to minimize the
square of the prediction error in terms of the critic network output,

Ec.t/ D 1
2
e2

c .t/ (4)

The weights of the critic network are then updated according to
a gradient descent algorithm,

wc.t C 1/ D wc.t/ C 1wc.t/ (5)

1wc.t/ D ¯c.t/

µ
¡

@ Ec.t/

@wc.t/

¶
D ¯c.t/

µ
¡

@ Ec.t/

@ J .t/

@ J .t/

@wc.t/

¶
(6)

where ¯c.t/ is the learning rate of the critic network at time t, which
usually decreases with time to a small value. The network weights
are adjusted according to Eqs. (5) and (6), where

@ Ec.t/

@ J .t/
D @ Ec.t/

@ec.t/

@ec.t/

@ J .t/
D ®ec.t/ (7)

and @ J .t/=@wc.t/ is a function of the critic network’s structure.

Fig. 2 Two-layer nonlinear feedforward neural network.

Action Network
The actionnetworkgeneratesthe desiredplant controlgivenmea-

surements of the plant states. As with the critic network, the action
network can be implemented with the standard multilayer linear or
nonlinear feedforward neural network shown in Fig. 2. In this case,
the number of network outputs equals the control space dimension.

The principle in adapting the action network is to backpropagate
the error between the desiredultimatecost objective,denotedbyUc ,
and either the actual cost or the cost approximation.Uc is set to 0
in the helicopter control application.Either the actual cost function
R.t/ or an approximation to it, J .t/, can be used depending on
whether an explicit cost function is available or a critic network
needs to be used. In the latter case, which is used in this paper,
backpropagationis done through the critic network.

The weight updating in the action network is formulated as fol-
lows. Let

ea.t/ D J .t/ ¡ Uc.t/ (8)

The weights in the action network are updated to minimize the
following performance error measure:

Ea.t/ D 1
2
e2

a.t/ (9)

The update algorithm is similar to that used for the critic network.
By a gradient descent rule,

wa.t C 1/ D wa.t/ C 1wa.t/ (10)

1wa.t/ D ¯a.t/

µ
¡ @ Ea.t/

@wa.t/

¶
(11)

where

@Ea.t/

@wa.t/
D @ Ea.t/

@ J .t/

@ J .t/

@u.t/

@u.t/

@wa.t/
(12)

@ Ea.t/

@ J .t/
D @ Ea.t/

@ea.t/

@ea.t/

@ J .t/
D ea.t/ (13)

where @ J .t/=@u.t/ is calculatedthroughthe critic network if a critic
is used or through the cost function if it is used and @u.t/=@wa.t/ is
calculatedthrough the action network and dependson the network’s
particular structure.

MIMO NDP Implementation for Helicopter Control
The basic NDP framework described needs to be further devel-

oped to actually implement NDP as a viable form of helicoptercon-
trol. Expanding on this paradigm results in the more sophisticated
NDP control structure,shown in Fig. 3. Such a control structure can
also be used to solve command tracking and other control problems
more sophisticatedthan stabilization.This section describes the de-
tails of this more advancedNDP controllerand the rationale behind
them.

First, a trim network that schedules the nominal control trim po-
sition as a function of aircraft state and environmental/� ight param-
eters (such as aircraft weight, air density, etc.) is required. Having
NDP determine the control trim position is key to successfullyusing
NDP to controlgeneral systems.PreviousNDP controldesignswere
successfulbecause the systems that were tested, for example, the in-
verted pendulum,had a zero trim requirement.7 Often � ight control
papershavepresentedcontrolmethodologiesthatweredesignedand
tested on linear models that have a zero trim requirement because
the linearmodel is linearizedabout a trim condition.Such lineariza-
tion can misleadingly indicate good results. This, too, would be the
case for NDP and, hence, the required use of an accurate nonlinear
model, which, as a consequenceof its nonlinearities,has a nonzero
trim requirement.

The trim network, shown in Fig. 3, is trained using a collectedset
of trim data over the range of � ight conditionsof interest.An NDP-
based method for determining the trim position for a given � ight
condition has been developed, and a summary of the technique is
presented here.32
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Fig. 3 Comprehensive NDP controller.

Fig. 4 Trim positions as a function of airspeed for neural and FLYRT methods.

The NDP-based method for determining the trim control position
for a given � ight condition uses the of� ine action network with its
inputs zeroed. An initially assumed trim control position is picked,
using system knowledge if available. With the network inputs ze-
roed, the trim position can be equivalently stored as network biases
in the of� ine action network. The system is repeatedlyevolvedover
a speci� ed time interval (200 ms) with the actuators � xed at the
trim position’s current value. During each iteration, backpropaga-
tion training is used to tune the network biases (equivalently the
trim positions) until the squared error between the system’s evolved
states and the system’s desired trim states is minimized suf� ciently.
During the training procedure, the network’s learning rate ¯a is set
to decrease as a function of iteration number.

The method works very well, as shown in Fig. 4, which compares
the NDP generatedtrim positionsto thosegeneratedby FLYRT over
the range of 0–150 kn forward speed. In fact, the results appear to be
identical except for roll, which has a worst-case difference of less
than 0.15 deg.

Several other considerations need to be made to implement the
NDP controller for control of systems such as a helicopter.First, the
action network is implemented as a traditional two-layer feedfor-
ward network.However, because the actionneural network’s output

(control) is typically limited to §1 by the sigmoidal nonlinearity
present in the last stage of the network, a control scaling factor is
used for each control. The value chosen is typically Kcont D umax

where umax is the maximum control authority of the actuators. It is
necessary to incorporatethis scaling into the backpropagationwhen
training the action network.

Second, the quadratic reinforcement signal described earlier is
used. Not only does this provide better information than the binary
reinforcement signal, it is requisite for the command tracking con-
trol problem.Additionally,the normalizationfactorused in the rein-
forcement function is decreased as a function of time at a speci� ed
rate until it reachesa lower limit.This allows the relative importance
of each state to change with time as required by the application.

Third, the failure criteria used in the originalNDP framework are
also decreasedas a functionof time. This helps reduce the allowable
error in the plant’s states as time increases.

Fourth, the input to the action network, x¤, needs to be a nor-
malization of x ¡ xd rather than simply a normalization of x . This
providesnonzerostatestabilizationand commandtrackingcapabili-
ties.The input to the critic is .x¤/2, which helps shape the J formand
has resulted in signi� cant performance improvements over results
in previous research.
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Fifth, network biases are added to the action network to accom-
modate control biases and disturbances in the plant (much like in-
tegrators are added to linear quadratic controllers).

Finally, an additionalaction neuralnetwork (ANN) can be imple-
mented to performonline learning to adapt to local � ight conditions
while the � rst ANN’s weights are frozen after having been trained
of� ine under speci� c common � ight conditions.The second ANN’s
online weight adaptationsbased on its experiences should improve
the controller’s performance. The second ANN can be authority
limited as required by the application. The results in this paper do
not include the second ANN.

Helicopter Model
NDP is tested using the helicopter model shown in Fig. 5. The

model, run at 50 Hz, consists of three parts: an actuator model, an
actuator to blade geometry model, and FLYRT.

At the heart of the helicopter model is FLYRT, a sophisticated
nonlinear � ight simulation model of the Apache helicopter devel-
oped by The Boeing Company over the past two decades.33 FLYRT
models all of the forces and moments acting on the helicopter.The
rotor is modeled using a blade element model. FLYRT dynamically
couples the six-degree-of-freedom rigid body of the helicopter to
the main rotor through Euler equations. The drive train is repre-
sented as a single-degree-of-reedom model and is coupled to the
main rotor, tail rotor, and engine. The engine is modeled in suf� -
cient detail to cover performanceover all phases of � ight, including
ground modes. The landing gear is modeled as three independent
units interfacing with a rigid airframe. Quaternions are used during
state integration to accommodate large attitude maneuvers.

In addition to FLYRT, our model also consists of actuatormodels
as well as a modelof the mechanicalgeometrybetween the actuators
and the helicopter blades. Each actuator is modeled as a � rst-order
lag with time constant ¿ D 0:03, re� ective of a typical actuator. Ac-
tuator rate and position limits are also modeled. Thus, the inputs

Fig. 5 Flight control system overview.

Fig. 6 Typical and statistical state and control trajectories of NDP stabilization at 30 kn in turbulence.

to FLYRT are the four commanded blade angles of the helicopter:
collective, longitudinal, lateral, and directional. The outputs from
FLYRT are numerous;for � ight controlpurposes,they are limited to
the aircraft’s translationaland rotationalvelocitiesand the aircraft’s
orientation for a total of nine states.

The operating conditions for which our simulation studies are
performed are shown in Table 1. The center of gravity (c.g.) is
listed in the standard Apache fuselage station/water line/butt line
coordinate frame.33

Results
This section presents results showing the performanceof NDP in

stabilizing the Apache helicopter. Characteristic to previous NDP
research, the performance of NDP is summarized statistically in
tables. Five � ight conditions are considered, the stabilization of
the helicopter at hover and at 30, 60, 90, and 120 kn. Each � ight
condition is tested in three wind conditions: case A, no wind; case
B, 10-ft/s step gust for 5 s; and case C, Dryden turbulence with a
spatial turbulenceintensityof¾ D 5 ft/s anda turbulencescale length
of LW D 1750 ft. In addition to the tabular statistics provided, both
statisticaland typical time historyplots (Figs. 6 and 7) of the aircraft
states are provided for two cases, turbulenceat 30 kn and step gusts
at 90 kn. Figures 6 and 7 show the performance during the testing
phase. Time history plots for the other � ight conditions are similar.

The objective of stabilization is to drive all aircraft states to their
desired values for the given � ight conditions during network train-
ing, regardlessof the vehicle’s initial conditions.The states of inter-
est are the aircraft’s translational (u; v; w) and rotational (p; q; r )
velocities and the aircraft’s Euler angles pitch µ , roll Á, and yaw
Ã . Failure criteria are used to bound each state’s allowed error. The
allowed errors, shown in Table 2, are initially large and decrease as
a function of time to an acceptable minimum.

Table 1 Helicopter operating conditions

Parameter Value

Weight 16,324 lb ¢ ft
Fuselage station, c.g. 201.6 in.
Butt line, c.g. 0.2 in.
Water line, c.g. 144.3 in.
Temperature 59±F
Altitude 1,770 ft
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These failure criteria were chosen judiciously, but no claims are
made to their optimality. The results show that these criteria create
a control system that can stabilize the helicopter both in nominal
conditions and when subjected to disturbances. Heuristic failure
criterion is one of the advantages of NDP if one does not have an
accurate account of the performancemeasure. This is also one char-
acteristic of the NDP design that differs from other neural control
designs. The critic network plays the role of working out a more
precise account of the performance measure for credit/blame as-
signment derived from the heuristic criteria. If the networks have
converged, an explicitly desired state has been achieved, which is
re� ected in the Uc term in the NDP structure.

The statistical success of the NDP controller’s ability to learn to
control the helicopter is evaluated for the � ve � ight conditions.For
each � ight condition, 100 runs were performed to evaluate NDP’s
performance,where for eachrun the neuralnetworks’initialweights
were set randomly. Each run consists of up to 500 attempts (trials)
to learn to control the system successfully. An attempt is deemed
successful if the helicopter stays within the failure criteria bounds
described in Table 2 for the entire � ight duration (1 min). If the
controller successfully controls the helicopterwithin 500 trials, the
run is considered successful, if not, the run is considered a failure.

The statistical training results for the 15 � ight conditions simu-
lated are shown in Table 3. The percentageof successfulruns re� ects
the percentageof runs for which theNDP systemsuccessfullylearns
to control the helicopter.The averagenumber of trials is the average
number of trials that it takes the NDP system to learn to control the
helicopter.

The neural network parametersused during trainingare provided
in Table 4. The learning rates, ¯ , for the ANN and critic network
are potentially scheduled to decrease linearly with time (typically
over a few seconds). In every time frame, the weight equations are
updated until either the error has suf� ciently converged (E < E tol)

Table 2 Failure criterion for helicopter stabilization

Aircraft Initial allowed Final allowed
state error error Error rate

u; v; w 20 ft/s 4 ft/s ¡0.8 (ft/s)/s
p; q; r 30 deg/s 6 deg/s ¡1.2 (deg/s)/s
µ; Á; Ã 30 deg 6 deg ¡1.2 deg/s

Fig. 7 Typical and statistical state and control trajectories of NDP stabilization at 90 kn with step gust.

or Ncyc internal update cycles of the weights have occurred. Nh is
the number of hidden nodes in the neural networks. Note that these
parameters were chosen based on experience but were not tuned to
optimize the results.

The results indicate that a large number of trials must be made
before successful stabilization. This is not suprising for a learning
system that is learning from experiencewithout any a priori system
knowledge.The rami� cation is that this training is done of� ine, that
is, not in a real helicopter, where failures can be afforded, until the
controller is successfully trained. Once trained, the neural network

Table 3 Learning statistics for NDP control of the Apache
helicopter for three wind conditions

Condition

Case Hover 30 kn 60 kn 90 kn 120 kn

Case A
Percentage of successful 100 100 100 100 100

runs, %
Average number of trials 18 47 36 30 70

Case B
Percentage of successful 28 72 82 66 30

runs, %
Average number of trials 201 148 162 176 191

Case C
Percentage of successful 88 63 74 77 45

runs, %
Average number of trials 128 214 206 186 200

Table 4 Neural network parameter values

Parameter Value

¯a.t0/ 0.1
¯a.t f / 0.1
¯c.t0/ 0.1
¯c.t f / 0.01
Ncyc; a 200
Ncyc; c 100
Etol; a 0.005
Etol; c 0.1
Nh 6
Kcont 5.0
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weights are frozen, and the controller structure shown in Fig. 3 can
be implemented in a helicopter. Limited authority online training
can then be performed to improve system performance.

Once the system is successfully trained, the action network’s
weights are frozen, and the system can be tested. Typical and statis-
tical time histories of the system when tested are shown for a � ight
at 30 kn in turbulence (Fig. 6) and a � ight at 90 kn exposed to a
step gust (Fig. 7). The typical time history was a randomly chosen
simulation selected from the repertoire of test runs for that � ight
condition. The average error and error deviation re� ect the Monte
Carlo sample mean and sample variance over time when testing all
of the successfully trained networks re� ected in the Table 3 statis-
tics for the speci� ed � ight condition.The results show that once the
NDP controller has been successfully trained, it can reliably and
consistently drive the system to its desired states.

Conclusions
This paperhas takenNDP andsuccessfullyapplied it to helicopter

stabilization, a sophisticated and realistic control problem. Results
presented here show the NDP controller able to stabilize success-
fully the Apache helicopter over a wide range of � ight conditions
and subject to various disturbances.Several new developments de-
scribed in this paper have been made to extend NDP to the general
MIMO control problem. The net result is that NDP shows promise
as a viable control system design methodology, especially where
model-free control system designs are required or where there is
complex multi-axes coupling issues.
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